

Architecting a Distributed Dynamic Image Server for the Web
Alain Chesnais, Tim Beck, Rudy Ziegler

TrueSpectra, Inc
http://www.truespectra.com/

Introduction

One of the most labor-intensive tasks in the development of web
sites is the creation of derivative images for display of a visual
element at multiple sizes or in multiple styles. For instance, a
typical online catalog will have at least three different visual
representations for each product sold: one thumbnail sized image
for visual browsing, one mid sized image for viewing a product
description and one large sized image for viewing product detail.
The approach outlined in this presentation is to enable the web
server to actively generate any derivative image from a high-
resolution base image. Derivative images are then cached on the
server to speed delivery of subsequent requests for the same
derived content.

Dynamic Image Serving

We call the process of enabling the server to generate derivative
images on the fly "Dynamic Image Serving". In the
implementation described in this presentation, commands are
passed to the server via standard HTTP query strings.

Here are two examples with their associated URLs.

Thumbnail:
http://iris.truespectra.com/overview/phone.jpg?wid=75&cvt=jpeg

Medium:
http://iris.truespectra.com/overview/phone.jpg?wid=175&
cvt=jpeg

The WID parameter that is passed to the base image in the
examples above controls the width of the resulting image in pixels

The overall effect of doing this is to enable a web server to
become aware of image assets and automatically perform image
manipulation without requiring the use of CGI scripts or back end
coding.

Dynamic Image Serving Architecture

We propose to describe an architecture for implementing
Dynamic Image Serving based upon three components:

• A cache component responsible for storing results that
have already been calculated

• A render component responsible for actually doing the
image manipulations that are requested

• An image store component responsible for storing the
high-resolution base images and delivering the relevant
portions of these images to the render component.

The challenge that arises when deploying such a solution is
determining how to be able to scale as demand on the server rises.
Scaling can occur in three areas: number of total hits, number of
render requests and number of base images to store.

The architecture that we present allows you to implement
each component described above on dedicated machines. We will
describe how to monitor and scale each set of machines based on
the observed load. Appropriate metrics are developed and
described to show how one can then scale adequately in either of
three ways (total hits, render requests, number of images) and
maintain an optimally performing system. Examples are taken
from our experience in providing such a networked solution in a
geographically distributed Dynamic Image Serving network for
the past year.

300

